# Erratum: Photogeneration of electrons in dust clouds in near space [Phys. Rev. E 79, 046407 (2009)] 

Mahendra Singh Sodha, Amrit Dixit, and Sweta Srivastava<br>(Received 27 May 2009; revised manuscript received 13 November 2009; published 21 December 2009)

DOI: 10.1103/PhysRevE.80.069906 PACS number(s): 94.05. - a, 94.20.wl, 52.72. $+\mathrm{v}, 52.27 .-\mathrm{h}, 99.10 . \mathrm{Cd}$

In Eq. (4e) $\xi$ should be replaced by $\xi-(Z+1) \alpha$ to take account of the charge of the particle. A term $(Z+1) \alpha$ was also needed to be deducted from the right-hand side of Eq. (4e) to account for the work done by a photoelectron to move from the surface to infinity. Tables I-III and all the figures therefore stand changed. The corrected Eq. (4e), Tables I-III, Figs. 1-5, and the corrections in Sec. V are as follows; figure captions are correct. Equation (4e) should read

$$
\begin{align*}
\left(\varepsilon_{p h} / k T\right)= & -(Z+1) \alpha+\left\{\int_{0}^{\infty} \eta^{2}(1+\exp \{\eta-[\xi-(Z+1) \alpha]\})^{-1} d \eta+2(Z+1) \alpha \Phi\{[\xi-(Z+1) \alpha]\}\right. \\
& \left.+(Z+1)^{2} \alpha^{2} \ln (1+\exp \{[\xi-(Z+1) \alpha]\})\right\} / \Psi(\xi, \overline{Z+1} \alpha)=F_{1}(\xi, \overline{Z+1} \alpha), \tag{4e}
\end{align*}
$$

by using the identity

$$
\int_{0, \xi_{1}+\xi_{2}>(Z+1) \alpha}^{\infty} \int_{0}^{\infty}\left(\xi_{1}+\xi_{2}\right)\left\{1+\exp \left(\xi_{1}+\xi_{2}-\xi\right)\right\}^{-1} d \xi_{1} d \xi_{2}=\int_{(Z+1) \alpha}^{\infty} \eta^{2}[1+\exp (\eta-\xi)]^{-1} d \eta
$$

In Sec. V, paragraph 3, in the discussion of Fig. 1, in the text (lines 6 and 7) "; it may be noticed that the mean energy of the photoelectrons increases with increasing $Z$ and decreasing $a$." should be replaced by "; it may be noticed that the mean energy of the photoelectrons decreases with increasing $Z$ and decreasing $a$." In the discussion of Fig. 2, in the text (lines 9-11) "It is seen that the electron temperature increases with increasing $Z$ and decreasing $a$ " should be replaced by "It is seen that the electron temperature decreases with increasing $Z$ and decreasing $a$."

In paragraph 4, (a) in lines 1,3 , and 4 referring to Fig. 4 , " $n_{p}$ " should be replaced by " $n$." (b) The fourth and fifth sentences in the original paper, which read "Furthermore $\alpha$ is lower for higher values of $a$ and hence $Z$ decreases with increasing $a$. It is also seen that $Z \approx 1$ at $\left(n / n_{p}\right)$ s/cm $\geqslant 100 \times 10^{10}$ and the $Z$ vs $\left(n / n_{p}\right)$ curve has a very small negative slope, for higher values of $n / n_{p}$." should be replaced by "Furthermore $\alpha$ is lower for higher values of $a$ and hence $Z$ increases with increasing $a$. It is also seen that $Z \approx 1$ for $\left(n / n_{p}\right) \geqslant 225 \times 10^{-10} \mathrm{~s} / \mathrm{cm}$ and the $Z$ vs $\left(n / n_{p}\right)$ curve has a very small negative slope, for higher values of $\left(n / n_{p}\right)$."

In paragraph 5, the second sentence "The interesting result is that for large particle densities $\left[\left(n / n_{p}\right) \geqslant 100 \times 10^{10} \mathrm{~s} / \mathrm{cm}\right]$, $\left(n_{e} / n_{p}\right)$ tends to saturate asymptotically to $115 \times 10^{10} \mathrm{~s} / \mathrm{cm}$ " should be replaced by "The interesting result is that for large particle densities $\left[\left(n / n_{p}\right) \geqslant 200 \times 10^{-10} \mathrm{~s} / \mathrm{cm}\right]\left(n_{e} / n_{p}\right)$ tends to saturate asymptotically to $220 \times 10^{-10} \mathrm{~s} / \mathrm{cm}$."

TABLE I. $F_{1}=(\xi, \overline{Z+1} \alpha)$ for $1 \leqslant \xi \leqslant 8$.

| $\begin{gathered} \xi \rightarrow \\ (Z+1) \alpha \end{gathered}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 1.73234 | 1.96651 | 2.30933 | 2.74097 | 3.261 | 3.77477 | 4.34342 | 4.93313 |
| 2 | 1.43231 | 1.56106 | 1.79139 | 2.12938 | 2.55559 | 3.04494 | 3.57764 | 4.14028 |
| 3 | 1.28821 | 1.34624 | 1.47161 | 1.69632 | 2.02678 | 2.44437 | 2.92464 | 3.44821 |
| 4 | 1.21417 | 1.23733 | 1.29404 | 1.41665 | 1.63662 | 1.9605 | 2.37022 | 2.84195 |
| 5 | 1.17184 | 1.18058 | 1.20332 | 1.25902 | 1.37946 | 1.59565 | 1.91414 | 2.31726 |
| 6 | 1.14474 | 1.14796 | 1.15657 | 1.17899 | 1.23388 | 1.35262 | 1.56579 | 1.87989 |
| 7 | 1.12569 | 1.12686 | 1.13004 | 1.13855 | 1.16071 | 1.21497 | 1.33234 | 1.54306 |
| 8 | 1.11136 | 1.11179 | 1.11296 | 1.11611 | 1.12453 | 1.14648 | 1.20022 | 1.31647 |
| 9 | 1.10009 | 1.10025 | 1.10067 | 1.10183 | 1.10496 | 1.11331 | 1.13509 | 1.1884 |
| 10 | 1.09094 | 1.091 | 1.09116 | 1.09158 | 1.09273 | 1.09583 | 1.10413 | 1.12576 |

TABLE II. $F_{1}=(\xi, \overline{Z+1} \alpha)$ for $9 \leqslant \xi \leqslant 60$.

| $\xi \rightarrow$ <br> $(Z+1) \alpha$ <br> $\downarrow$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE III. $F_{1}=(\xi, \overline{Z+1} \alpha)$ for $70 \leqslant \xi \leqslant 300$.

| $\begin{gathered} \xi \rightarrow \\ (Z+1) \alpha \\ \downarrow \end{gathered}$ | 70 | 80 | 90 | 100 | 150 | 200 | 250 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 45.7381 | 52.3544 | 58.9834 | 65.8947 | 98.2935 | 131.018 | 166.614 | 198.15 |
| 2 | 44.7672 | 51.3854 | 58.0506 | 64.8368 | 97.2761 | 130.446 | 165.765 | 199.011 |
| 3 | 43.812 | 50.4415 | 57.1345 | 63.8029 | 96.352 | 129.744 | 164.54 | 199.884 |
| 4 | 42.8736 | 49.5158 | 56.2234 | 62.7946 | 95.4268 | 128.576 | 162.82 | 200.395 |
| 5 | 41.9518 | 78.5982 | 55.3038 | 61.8123 | 94.5055 | 127.428 | 161.362 | 199.966 |
| 6 | 41.0457 | 47.6824 | 54.369 | 60.8548 | 93.6061 | 126.829 | 160.658 | 197.953 |
| 7 | 40.154 | 46.7712 | 53.4304 | 59.9208 | 92.7189 | 126.483 | 160.325 | 194.689 |
| 8 | 39.2759 | 45.8728 | 52.4999 | 59.009 | 91.8461 | 125.745 | 159.643 | 191.947 |
| 9 | 38.4125 | 44.9915 | 51.587 | 58.1178 | 90.981 | 124.464 | 158.073 | 190.827 |
| 10 | 37.564 | 44.1268 | 50.6945 | 57.2456 | 90.1328 | 123.327 | 155.97 | 190.958 |



FIG. 1. Dependence of mean energy $\varepsilon_{\mathrm{ph}} / k T$ of emitted photoelectrons from a stainless-steel particle of charge $Z e$, irradiated by Lyman $\alpha$ radiation of $1215.7 \AA$; the letters $p, q$, and $r$ refer to $a=100,175$, and $250 \AA$.


FIG. 2. Dependence of electron temperature $T_{e} / T$ on $Z$ for stainless-steel spherical particles irradiated by Lyman $\alpha$ radiation; the letters $p, q$, and $r$ refer to $a=100,175$, and $250 \AA$.


FIG. 3. Dependence of electron density $n_{e} / n_{p}$ on $Z$ for spherical particles, irradiated by Lyman $\alpha$ radiation; the letters $p, q$, and $r$ refer to $a=100,175$, and $250 \AA$.


FIG. 4. Dependence of electron density $Z$ on $n / n_{p}$ for spherical particles, irradiated by Lyman $\alpha$ radiation; the letters $p, q$, and $r$ refer to $a=100,175$, and $250 \AA$.


FIG. 5. Dependence of electron density $n_{e} / n_{p}$ on $n / n_{p}$ for spherical particles irradiated by Lyman $\alpha$ radiation; the letters $p, q$, and $r$ refer to $a=100,175$, and $250 \AA$.

